Forces & Newton's Laws for Enriched Physics Page 1 of 3

- 1. Sketch scenario.
 - a. If phrase-by-phrase translation of problem statement into figure and/or table is unreliable, fill out optional phrase-translation table as you carry out substeps below.
 - b. **Read** a short phrase containing one of the following items (a phrase might play multiple roles).
 - i. Object/person (possibly with characteristics)
 - ii. Action (possibly with characteristics)
 - iii. Location/time (possibly with characteristics)
 - iv. Quantity (dimension or count)
 - c. **Draw** a simple representation of the phrase (unless meaning of phrase has already been sketched).
 - d. **Underline** the phrase. If phrase required no additional sketching, dash-underline the phrase.
 - e. Go back to step (a) and analyze **next** phrase.
- 2. Draft a **force diagram** using **BETA**. This first draft is just for figuring out force directions.
 - a. **<u>Bubble</u>** the system (try one object or a combination of objects moving together rigidly).
 - b. Earth nearby? If so, use **Table 1**, row 1 to draw $F_{E \text{ on SYS}}$.
 - c. <u>Touching?</u> Run your finger along system's bubble. Announce each external object in contact with the system. For each external object, draw appropriate force(s) using **Table 1** rows 2-5, as applicable.
 - i. Use N3L to uncover hidden information about forces on the system:
 - 1. If the problem describes a force the system exerts on an external object, copy and fill in the N3L template below. Draw the corresponding force on the system.

	$\vec{F}_{\text{SYS on EXT OBJ}}$	Relationship	$ec{F}_{ ext{EXT OBJ on SYS}}$
Direction		Opposite	
Strength		Sane	

- d. Axis system: In force-components table, record +x and +y directions.
- 3. Sketch system's **motion diagram**.
 - a. Draw current position dot. From this dot, extend current velocity arrow \vec{v}_i .
 - b. Draw slightly later position dot. From this dot, extend slightly later velocity arrow \vec{v}_f .
 - c. In empty workspace nearby, **paste** a copy of **current velocity arrow** \vec{v}_i (don't draw dot).
 - d. **Paste** a copy of **slightly later velocity arrow** \vec{v}_f (don't draw dot) with the **tails** of the pasted \vec{v}_i and \vec{v}_f arrows **touching** (leave tiny gap if readability requires).

Edition: 2025 November 17 12h23 EST

DAVIDLIAO.COM

e. Draw segment connecting arrowheads of pasted \vec{v}_i and \vec{v}_f . Draw segment's arrowhead where segment touches arrowhead of slightly later velocity arrow \vec{v}_f . Label this segment $\Delta \vec{v}$.

4. Fill in **Newton's Tripod**.

- a. Were you told the direction of the net force $\sum \vec{F}$?
- b. Were you told all relative sizes of forces in your force diagram?
- c. Were you told (or figured out) the direction of the acceleration \vec{a} ?
- d. Do you know the direction of the $\Delta \vec{v}$?
- e. If you answered "Yes" to any of questions (a), (b), (c), or (d) above, write in Newton's Tripod the direction of $\sum \vec{F}$, \vec{a} , or $\Delta \vec{v}$ you determined.

5. Update lengths of force arrows.

- a. What's the direction of the net force $\sum \vec{F}$ based on your force diagram? Does the direction of $\sum \vec{F}$ your force diagram implies match the direction of net force $\sum \vec{F}$ in Newton's Tripod? If not, edit force sizes in your force diagram to eliminate the inconsistency.
- b. (You can skip this step if you're not given a grid for your force diagram): If problem statement discloses numerical force strengths, tweak force-arrow lengths accordingly.

6. Fill in rest of force-components table.

- Copy direction of each force in force diagram into direction column of force-components table. Copy full sizes (strengths) from problem statement or **Table 1**, column D.
- b. Use direction and full-size columns to fill in *x*-direction, *x*-sign, *x*-size, *y*-direction, *y*-sign, and *y*-size columns.
- c. Write 0 for each a net-force component $(\sum F_x \text{ or } \sum F_y)$ known to be 0.
- d. For each net-force component remaining blank, fill in the entry by adding up contributions from preceding rows.

7. Set up algebraic equations using N2L.

- a. Under force-components table, write $a_x = \frac{\sum F_x}{m}$ and $a_y = \frac{\sum F_y}{m}$ in appropriate columns.
- b. If a_x is known to equal 0, slash a_x "out to 0" and, on the next line, write $0 = \sum F_x$, with $\sum F_x$ replaced by the sum over appropriate x-components of forces from the force-components table.
- c. If a_x is not known to be 0, write a new copy of N2L, with $\sum F_x$ replaced by the corresponding entry from the force-components table.
- d. Go through (b) and (c) for a_{ν} .
- 8. Carry out algebra.
- 9. You might need to use kinematics knowledge for additional calculations.

Table 1. Objects and forces they can exert

	A. External object	B. Name & label	C. Direction	D. Memorized mag	gnitude formulas (if any)	
1.	Earth	Gravitational (name isn't important)	Rule: Down (toward Earth's center) Write: "The Earth attracts the system, so the force of the Earth on the system is	$F_{\rm E\ on\ SYS} = mg$ $F_{\rm E\ on\ SYS}$: Strength of Earth's pull on system m : System's mass g : Gravitational acceleration near Earth's surface, $9.8\frac{\rm N}{\rm kg} = 9.8\frac{\rm m}{\rm s^2}$		
		F _{E on SYS}	downward."			
2.	Tight string	Tension (name isn't important) $F_{\text{STR on SYS}}$	Rule: From system back into string Write: "Tight strings pull, so the force of the string on the system points toward the"	(No memorized formula)		
3.	Surface	Normal $F_{ m N,SURF}$ on SYS	Rule: From surface directly back into system Write: "Surfaces provide perpendicular presses, so the surface presses on the system in the direction."	(No memorized formula)		
4.	Surface threatening to scrape a face of the system.	Static friction fs,surf on sys	Rule: Bristles of surface "toothbrush" strive to unbend themselves Write: "Friction opposes slippage, so the static friction force the surface exerts on the system points toward the"	$f_{S,SURF \text{ on SYS,max}} = \mu_{S,SURF \& SYS} F_{N,SURF \text{ on SYS}}$ $f_{S,SURF \text{ on SYS,max}}$: Maximum possible strength of static friction force surface could exert on system $\mu_{S,SURF \& SYS}$: Coefficient of static friction (property of system and surface) $F_{N,SURF \text{ on SYS}}$: Strength of press surface exerts on system		
	* Unsure whether a surface is threatening to scrape or already scraping the system? Presume scraping is threatened and look out for results refuting your presumption.			$f_{S,SURF \text{ on SYS}}$: Strength of static friction force surface exerts on system		
				Algebraic situation $f_{S,SURF \text{ on SYS}} < f_{S,SURF \text{ on SYS,max}}$	Surface and system Remain securely stuck	
				$f_{S,SURF \text{ on SYS}} = f_{S,SURF \text{ on SYS,max}}$	Remain stuck, but on verge of slipping OR - Just barely starting to get unstuck	
				$f_{ m S,SURF~on~SYS} > f_{ m S,SURF~on~SYS,max}$	Not actually stuck. Scraping is ongoing Presumption of absence of scraping is refuted.	
5.	Surface scraping a face of the system	Kinetic friction $f_{K,SURF \text{ on SYS}}$	Rule: Bristles of surface "toothbrush" strive to unbend themselves Write: "Friction opposes slippage, so the kinetic friction force the surface exerts on the system points toward the"	$f_{K,SURF \text{ on SYS}}$: Strength of kinetic frict	iction (property of system and surface)	

Edition: 2025 November 17 12h23 EST

Table 2. Newton's Laws

Table 2. Newton's Laws							
Law	Wordy statement	<u> </u>	Convenient statement				
	Unless acted upon by a non-zero net force	For a system, precisely one of the following options is true:					
Newton's 1 st Law (N1L)	$\sum \vec{F}$, an object at rest stays at rest and an object	a.	a. The net force $\sum \vec{F}$ on the system and the acceleration \vec{a} of the system are both 0.				
	in motion stays in constant-velocity motion.	b. The net force $\sum \vec{F}$ on the system and the acceleration \vec{a} of the system are both non-zero.					
Newton's Tripod (don't	The directions of the net force $\sum \vec{F}$ on a	\vec{a}					
write this unofficial	system, acceleration \vec{a} of the system, and	Direction:					
name; instead say "as a	change in velocity $\Delta \vec{v}$ of the system are all the						
consequence of N2L")	same.		$\Sigma ec F$ $\Delta ec v$				
Newton's 2 nd Law (N2L)	System acceleration \vec{a} equals the ratio of net			$\sum F_{\chi}$	$a_y = \frac{\sum F_y}{m}$		
Newton \$ 2 Law (N2L)	force $\sum \vec{F}$ on the system to system mass m .			$a_x = \frac{m}{m}$	$a_y = \frac{1}{m}$		
	When two objects interact, they exert a pair of			$\vec{F}_{ ext{A on B}}$	Relationship	$\vec{F}_{\mathrm{B\ on\ A}}$	
Newton's 3 rd Law (N3L)	forces on each other of equal strength and		Direction		Opposite		
	opposite direction.		Strength		Sane		
	If two forces are of the same type and the	1. Write names of two forces. Use subscripts to reveal exerter and exertee for each force.				and exertee for each force.	
Definition of	exerter of each is the exertee (recipient) of the	2.	2. Are the forces of the same type (example: both frictional)?				
N3L force pair	other, the forces are called a N3L force pair.		J I I				
NSE force pair		exerter of second force is exertee of first)?					
		4. If you answered "Yes" to 2 and 3, the forces are a N3L force pair.					

Writing an explanation

Table 3 Parts of an explanation

Table 5. 1 at 65 of all explanation					
 Component	Instructions	Example of wording style			
Flashcard	Cite a rows from Table 1 or Table 2 .	N2L says that the horizontal acceleration of the car equals the net horizontal force			
 knowledge		on the car divided by the car's mass.			
Evidence	Cite facts from problem statement (or information previously	The net horizontal force on the car is provided exclusively by the rightward static			
	determined with very few steps from problem statement).	friction the road exerts on the car, of strength 4000 N. The car's mass is 1000 kg.			
Claim	State conclusion.	So, the car has a rightward acceleration of $4\frac{m}{c^2}$.			

Arguing in the midst of contention

- 1. Fill in a column of Error! Reference source not found. w Table 4. Contention chart ith a correct argument.
- Fill in other column(s) with other people's arguments.
 Use your correct argument to "grade" other people's
- 4. Summarize your critiques of other people's arguments.

	Correct argument	Alice says	Bob says	Charne says
Flashcard				
knowledge				
Evidence				
Claim				

Edition: 2025 November 17 12h23 EST